NICAMDC : NICAM dynamical core package
What’s NICAMDC?
NICAMDC is the dynamical core package, which is a part of NICAM full model.
The development of NICAM with full physics has been codeveloped mainly
by the Japan Agency for MarineEarth Science and Technology (JAMSTEC),
Atmosphere and Ocean Research Institute (AORI) at The University of Tokyo,
and RIKEN / Advanced Institute for Computational Science (AICS).
A reference paper for NICAM is Satoh et al. (2008).
See alsoNICAM.jp.
This distribution package (NICAMDC) is released for the purpose of
widespread use of NICAM. The license is according to BSD 2 Clause.
Have lots of fun!
Numerical techniques for NICAMDC
NICAMDC is constructed by many original numerical techniques as below.
The overview of dynamical core development is summarized in Tomita et al. (2011).
You may easily construct a clone of NICAMDC by reviewing them.
Grid generation and accurate differential operators
Spring dynamics and gravitational center relocation make the default grid be more
homogeneous and smoothed. The 2nd order accuracy is guaranteed over the globe.
The detailed techniques are described in Tomita et al. (2001, 2002).
Recent improvement of grid generation is developed by Iga and Tomita (2014).
Nonhydrostatic scheme
The prognostic variable for thermodynamics is internal energy instead of potential
temperature. The conversion between internal energy, potential energy, and kinetic
energy is considered by the numerically consistent way. This technique is described
in Satoh (2002, 2003).
Prototype of three dimensional dynamical core and benchmark tests
The first NICAM dynamical core was made by techniques of Tomita et al. (2001, 2002)
and Satoh (2002, 2003). The detailed description and basic tests are summarized in
Tomita and Satoh (2004).
The higher order advection scheme with monotonicity
The 3rd order advection scheme based on conservative semiLagrangian like technique
was developed by Miura (2007) with the flux limiter proposed by Thuburn (1996).
Now. this advection scheme is a default scheme in NICAMDC.
Satisfaction of Consistency with Continuity
The Consistency With Continuity (CWC) is a necessary constraint for precise advection
of tracer. Based on Miura (2007)’ scheme, current NICAMDC guarantees the CWC. The
detailed description appears in Niwa et al. (2011).
Stretched grid
The icosahedral grid is one of homogeneous grids and used for global model. On the
other hand, for regional model with seamless grid, the horizontally stretched grid
is also available. The Schmidt transformation is enabling for the homogeneous grid
to stretch it without any skewness of grid. The stretched grid based on the icosahedral
grid by a modified Schmidt transformation is available. See Tomita (2008) for the
detail formulation.
Computational performance and parallelization techniques
The computational performance on the vector machine such as Earth Simulator and its
comparison with spectral transform model is evaluated in Tomita et al. (2008). For
massively parallel computing, mapping the region to nodes is one of key issues for
scalability. The special configuration for the torus topology of network is now
prepared (Kodama et al., 2013).
References

Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno and S. Iga (2008)
: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations.
J. Comp. Phys., the special issue on Predicting Weather, Climate and Extreme events, 227, 34863514.

Tomita, H., M. Satoh, H. Miura and Y. Niwa (2011)
: Current status of nonhydrostatic modeling at NICAM.
ECMWF Workshop on Nonhydrostatic Modelling, page 171182, ECMWF.

Tomita, H., M. Tsugawa, M. Satoh, and K. Goto (2001)
: Shallow Water Model on a Modified Icosahedral Geodesic Grid by Using Spring Dynamics.
J. Comp. Phys., 174, 579613.

Tomita, H., M. Satoh, and K. Goto (2002)
: An Optimization of the Icosahedral Grid Modified by Spring Dynamics.
J. Comp. Phys., 183, 307331.

Iga, S. and H. Tomita (2014)
: Improved smoothness and homogeneity of icosahedral grids using the spring dynamics method,
J. Comp. Phys., 258, 208226.

Satoh, M. (2002)
: Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme.
Mon. Wea. Rev., 130, 12271245

Satoh, M. (2003)
: Conservative scheme for a compressible nonhydrostatic model with moist processes.
Mon. Wea. Rev., 131, 10331050

Tomita, H. and M. Satoh (2004)
: A new dynamical framework of nonhydrostatic global model using the icosahedral grid.
Fluid Dyn. Res., 34, 357400.

Miura, H. (2007)
: An upwindbiased conservative advection scheme for spherical hexagonal–pentagonal grids.
Mon. Wea. Rev., 135, 40384044.

Thuburn, J. (1996)
: Multidimensional ﬂuxlimited advection schemes.
J. Comput. Phys. 123, 7483.

Niwa, Y., H. Tomita, M. Satoh and R. Imasu (2011)
: A threedimensional icosahedral grid advection scheme preserving monotonicity and consistency with continuity for atmospheric tracer transport.
J. Meteor. Soc. Japan, 89, 3, 255268.

Tomita, H. (2008)
: A stretched grid on a sphere by new grid transformation.
J. Meteorol. Soc. Japan, 86A, 107119.

Tomita, H., K. Goto, and M. Satoh (2008)
: A new approach of atmospheric general circulation model: Global cloud resolving model NICAM and its computational performance.
SIAM J. Sci. Comput. 30, 27552776.

Kodama, C., M. Terai, A. T. Noda, Y. Yamada, M. Satoh, T. Seiki, S. Iga, H. Yashiro, H. Tomita, K. Minami (2013)
: Scalable RankMapping Algorithm for an Icosahedral Grid System on the Massive Parallel Computer with a 3D Torus Network,
Parallel Computing, in revision.